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Abstract

We describe two schemes to manipulate the electronic qubit states of trapped ions independent of the
collective vibrational state of the ions. The first scheme uses an adiabatic method, and thus is intrinsi-
cally slow. The second scheme takes the opposite approach and uses fast pulses to produce an effective
direct coupling between the electronic qubits. This last scheme enables the simulation of a number of
nonlinear quantum systems including systems that exhibit phase transitions, and other semiclassical
bifurcations. Quantum tunnelling and entangled states occur in such systems.

PACS: 42.50.Vk,03.67.Lx, 05.50.+q

Ion trapping is currently the most advanced technology for the creation and study of en-
tangled multi-particle states [1, 2, 3]. For many years quantum optics has provided a fertile
experimental context to study the entanglement of two [4] and recently three modes [5],
however ion trapping provides a clearer path to entangling many more systems either in a
single trap or by a network of ion traps with a few ions in each [6]. The objective in an ion
trap quantum computer is to create an entangled state between the electronic states of dis-
tinct and addressable ions. Recently a partially entangled state of four trapped ions has
been achieved [7]. The electronic states of the ions interact weakly or not at all, so the
necessary interactions to create entanglement are mediated by the coupling of the electronic
states of each ion to a collective vibrational mode. This is the standard ion trap quantum
computer architecture first suggested by CIRAC and ZOLLER [8] and requires that the collec-
tive vibrational state be carefully controlled. Generally it is required that the particular col-
lective vibrational mode is cooled down to the ground state using laser cooling techniques.
Unfortunately the ions do not stay in this ground state but typically undergo some form of
heating that results in the irreversible excitation of higher collective vibrational states. Con-
siderable progress has been made in understanding this heating [9] and mitigating it [10].
However it continues to place limitations on current experiments.

A number of workers [11] have proposed alternative schemes to the standard ion-trap
QC architecture that do not require the ions to be cooled to the collective ground state. In
this paper we will review the two schemes that we have proposed. The first scheme [12] is
based on an adiabatic interaction between the collective vibrational modes and the internal
electronic states of the ion. While the scheme does succeed in producing an effective inter-
action between the electronic qubits that is independent of the vibrational state of the ions,
the dependence on adiabatic transitions makes it necessarily slow, and thus susceptible to
heating that occurs during the adiabatic process itself. The second scheme [13] overcomes
this problem by using a sequence of very fast interactions (ideally impulsive) that effec-
tively decouple completely the vibrational and electronic degrees of freedom. The great
advantage of this scheme is that in principle it enables a realisation of many nonlinear
interactions between the electronic degrees of freedom, including a number of important
models that exhibit quantum phase transitions. It thus becomes possible to study entangle-
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ment in nonlinear multi-particle systems, outside of the quantum computer paradigm, by
directly ‘synthesising’ interacting multi-particle systems.

1. Adiabatic Scheme

We make use of the fact that although the ions are not necessarily in the phonon mode
ground state, they all share the same phonon mode, thus enabling them to interact with
each other. In this paper we only consider mitigating the effect of thermal excitation in the
vibrational mode, here the centre-of-mass mode, (CM) used for logic operations. However
thermal excitation of the other modes is itself a source of decoherence due to the Debye-
Waller effect, which causes fluctuations in the effective Rabi frequencies that are used to
couple the vibrational and electronic degrees of freedom [1]. If all the other ‘spectator’
modes are in the ground state this effect can be ignored. We thus assume that except for
the centre-of-mass (CM) mode all the other modes have to be in their motional ground
state. If the number of ions is large, this constraint can be relaxed to some extent.

We will consider a controlled-rotation (C-ROT) gate between a pair of ions designated
control (c¢) and target (¢). To get a controlled not gate (C-NOT) we only need to sandwich
the C-ROT gate between single qubit rotations, which do not depend on the vibrational
state and thus are not of concern when heating is considered. The gate operation here con-
sists of a conditional sign change which takes place only if both ions are in the excited
state. It can be realised by a sequence of four laser pulses.

First a conditional phase shift S, is performed between the target qubit and the phonon
mode, thereby changing the sign of the wave function only if the phonon mode has an odd
excitation and the target ion is in its excited state. This operation can be performed, for
example, by applying a detuned laser pulse of well defined duration with the ion at the
node of a standing wave of the addressing laser [14]. The next step is to excite an addi-
tional phonon into the vibrational mode, conditional on the state of the control ion. This is
realised by an adiabatic passage between the excited state |1), and some auxiliary state |2),_
of the control ion, which at the same time excites a single phonon, thereby changing an
even phonon state to an odd phonon state (and vice-versa). The advantage of using adia-
batic passage for this step is that the operation can be carried out independent of the num-
ber of phonons. The next step is to perform a second conditional sign change S,. Finally
we disentangle the ion states from the phonon mode by performing the adiabatic passage
backwards. As will be shown in detail below, these four pulses produce the desired quan-
tum logic gate assuming that except for the CM mode all the other modes are in their
motional ground state. We will now describe those steps in detail. First let us consider the
various laser-ion interactions we will need.

To simplify our analysis we will assume that the phonon mode is in a pure state given
by the following formula:

|#)on = Zni an [n) , (1)

where a, are a set of unknown complex coefficients and |n) is the Fock state of occupation
number 7. It will be convenient in what follows to introduce the odd and even parts of this
wave function, viz.:

|even)ph = > ay |2n),
n

|Odd>ph = Z A2yt |21’l + 1> .



Fortschr. Phys. 48 (2000) 9—11 803

We will also use the following notation for phonon states to which a single quantum has
been added:

|0dd’>ph =Y ay2n+1),

(3)
leven') . = >~ a1 [2n 4 2) .

We should emphasise that our scheme does not require that the CM phonon mode be
prepared in either of these states: we are introducing these states for notational convenience
only.

The conditional phase change between odd phonon number states and the excited inter-
nal state of an ion can be carried out using an effect first considered by D’HELON and
MILBURN [14]. They introduced a Hamiltonian for a two-level ion at the node of a detuned
classical standing wave. In the limit of large detuning and for interaction times much great-
er than the vibrational period of the trap, this Hamiltonian for the jth ion in the Lamb-
Dicke limit, is

A N-1 4
HY =1 Y alay(0? +1/2), (4)
i=0

where UED is the population inversion operator for the jth ion, a; and a,T are the annihilation
and creation operators of the ith of the N phonon modes, and y = 5°Q*/(N0). Here 7 is
the Lamb-Dicke parameter, €2 is the Rabi frequency for the transitions between the two
internal states of the ions, N is the total number of ions and O the detuning between the
laser and the electronic transition. If we choose the duration 7 of this interaction to be
7 = 71/, the time evolution is represented by the operator

N-1 ,
Sj=exp|—i > ajai(agﬁ +1/2) 7| . (35)
i=0

If we now assume that the CM mode is in an arbitrary vibrational state, but all the other
modes are in their respective motional ground state, then this time evolution flips the phase
of the ion when the phonon mode is in an odd state and the ion is in its excited state, thus
providing us with a conditional phase shift for an ion and the CM phonon mode.

The adiabatic passage [15] which we require for our gate operation can be realised as
follows: We use two lasers, traditionally called the pump and the Stokes field. The pump
laser is polarised to couple the qubit state |1), to some second auxiliary state |3). and is
detuned by an amount A. The Stokes laser couples to the red side band transition
[2). |n+ 1) < |3). |n), with the same detuning A. If the population we want to transfer
adiabatically is initially in the state |1)_|n), we turn on the Stokes field (i.e. the sideband
laser) and then slowly turn on the pump field (i.e. the carrier laser) until both lasers are
turned on fully. Then we slowly turn off the Stokes laser: this is the famous ‘“‘counter-
intuitive” pulse sequence used in adiabatic passage techniques [15]. The adiabatic passage
has to be performed very slowly. The condition in our scheme is that 7 > 1/, ,,1/Qs ,,
where T is the duration of the adiabatic passage and £, , (£2s,) are the effective Rabi
frequencies for the pump and the Stokes transition, respectively. Furthermore, in order that
the various phonon number states be well resolved, we require that £, ,, Q25 , < W, the
phonon angular frequency. Using the adiabatic passage we can transfer the population from
[1), |n) to |2), |n+ 1). To invert the adiabatic passage, we just have to interchange the roles
of the pump and the Stokes field. We will denote the adiabatic passage by operators .Aj+
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and .A; defined as follows:
A (1) n) = [2) I+ 1)
Aj_ : |2>j n+1) — |1>j n) . (6)

Putting all those operations together, we can write down the step-by-step states for our
gate. We consider the controlled phase shift between the target ion and the phonon mode.
For simplicity we will only consider the state that changes.

D) 1), {leven), + [odd);,} 2 1), (1), {leven), —lodd),;.} - ™)

The next step is the adiabatic passage as explained above:

1D 1), {leven), — [odd),} &, 12), 1), {lodd’) ), — [even’),,} . (8)

The next step is the conditional phase flip on the target ion and the CM phonon mode:

12), 1), {=lodd');, — [even’); } Ay, {leven), + [odd),;.} - ©)

Thus we end up with a controlled rotation gate between the ions ¢ and #. A controlled-NOT
(CNOT) gate can be realised by performing sr/2 rotation pulses on the target qubit both
before and after this series of operations.

For simplicity, we have analysed these operations under the assumption that the state of
the CM phonon mode can be described by an arbitrary pure state. More generally, one
must assume that the CM phonon mode is in a mixed state, because it can be entangled
with some unknown external quantum system, for example the electromagnetic field caus-
ing the heating. Provided we assume that this external system does not become entangled
with internal degrees of freedom of the qubits, one can quite easily analyse the gate using a
density matrix formalism appropriate for mixed states. Since the adiabatic passage and the
conditional phase shift all work for arbitrary CM phonon mode states, our principal result,
that gate operations can be performed between arbitrary pairs of qubits, can be shown to be
true under these circumstances. However we have implicitly assumed that no heating is
taking place during the application of the adiabatic passage. As this process is necessarily
slow, this is a difficult assumption to justify in general. It would of course be better if a fast
method could be found to effectively decouple the vibrational and electronic motion and it
is to such a scheme that we now turn.

2. Fast Pulse Scheme

The interaction Hamiltonian for N ions interacting with the CM vibrational mode can be
controlled by using different kinds of Raman laser pulses. A considerable variety of interac-
tions has already been achieved or proposed [1—3]. Consider first the simplest interaction
that does not change the vibrational mode of the ions. Each ion is assumed to be driven by
a resonant laser field which couples two states, the ground state |g) and an excited state |e).
The interaction Hamiltonian is

: N A .
H = —é EY (200 — Qlol) (10)
i=1
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where €; is the effective Rabi frequency at the i’th ion and we have assumed the dipole
and rotating wave approximation as usual. The raising and lowering operators for each
ion are defined by o_ =|g) (¢| and o, = |e) (g|]. If we now assume that each ion is
driven by an identical field and chose the phase appropriately, the interaction may be
written as

H; = hQJ, (11)

where we have used the definition of the collective spin operators,
P S Gl
Jo=3" o4 (12)
i=1

where a = x,y,z and

. 1 ; .

o) =5 (07 + o), (13)
i i i i

o) = == (0! — o), (14)

of) = 2 (le) tel ~ lg) {gl) 1s)

The interaction Hamiltonian in Eq. 11 corresponds to a single collective spin of value
J = N/2 precessing around the J, direction du e to an applied field. By choosing the driv-
ing field on each ion to be the same we have imposed a permutation symmetry in the ions
reducing the dimension of the Hilbert space from 2" to 2N + 1. The eigenstates of J, may
be taken as a basis in this reduced Hilbert space. Collective spin models of this kind were
considered many decades ago in quantum optics [16] and are sometimes called Dicke mod-
els after the early work on superradiance of DICKE [17]. In much of that work however the
collective spin underwent an irreversible decay. In the case of an ion trap model however
we can neglect such decays due to the long lifetimes of the excited states.

The natural variable to measure is J, as a direct determination of the state of each ion via
shelving techniques will give such a measurement. These measurements are highly efficient,
approaching ideal projective measurements. The result of the measurement is a binary
string which is one of the degenerate eigenstates J,. Repeating such measurements it is

possible to construct the distribution for J, and corresponding averages. Other components
may also be measured by first using a collective rotation of the state of the ions.

We now show how to realise a controlled C-ROT gate for two trapped ions using condi-
tional displacement pulses. By appropriate choice of Raman lasers it is possible to realise
the conditional displacement operator for the i’th ion [18]

HY = —if(aya’ — afa) o) (16)

where a is the annihilation operator for the CM vibrational mode. If the ion is in the
excited (ground) state this Hamiltonian displaces the vibrational mode by a complex ampli-
tude o (—a). For a two qubit gate like a C-ROT gate we need a spin-spin interaction.
Suppose for example we wish to simulate the interaction of two spins with the Hamiltonian

Hip = hxogl)aiz) . (17)
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The required pulse sequence is

)
e

(

—in)? o 2

.5 (2 N .5
ircy Po; e~ ipPo; (18)

e Xol)
Uint :emXXo,_ e

_ efi%aﬁ”a@

where X = (a +a')/v/2, P = —i(a — a')/v/2 and we have used
eoPle  pmioPl — x4 Kpjz . (19)

The parameters for the displacements are, x, =/2|a| Tsin @ and x, = 2 |a| T cos 6
with 0 the phase of a , and T the pulse duration. In other words these are the pulse areas
for the conditional displacement pulses used when the Hamiltonian Eq. (16) is applied for
the appropriate choices of phase in a;.

This transformation may be used together with single spin rotations to simulate a two
spin transformation that is one of the universal two qubit gates for quantum computation.
For example the controlled phase shift operation, C-ROT,

Uy = eileh (e @leh e (20)

may be realised with y = 7 as

_izgl) _jag?
Up =e"2% 2% Uy (21)

This transformation does not depend on the vibrational state and so long as it is applied
faster than the heating rate of the collective vibrational mode it can describe the effective
interaction between two qubits independent of the vibrational mode. However if the pulse is
too rapid, there is a possibility of exciting motional sidebands of other collective modes,
which would be undesirable. For current ion traps however the pulses considered can be
sufficiently rapid to avoid heating without exciting other modes.

The form of Eq. (17) suggests that with an appropriate sequence of pulses it would be
possible to simulate an interacting spin chain described by the Ising model. It is easy to
verify that this is so. Recently there have been a few suggestions [19, 20] that quantum
entanglement plays a role in quantum (zero temperature) phase transitions [21]. The aim is
to show a connection between long range order and entanglement. We now show how fast
pulse transformations can be used to simulate interesting non linear models with phase
transitions.

An interesting model that exhibits a quantum phase transition is the transverse field Ising
spin chain [22] which in the simplest case has an interaction Hamiltonian of the form

N—1 N N .
H=—y ¥ oo™V —pu 3 o). (22)

i=1

It is not easy to see how a Hamiltonian of this form could be implemented in an ion trap
quantum computer using the method outlined in this paper, which most naturally imple-
ments unitary transformations rather than Hamiltonians. However a closely related model
described by the unitary operator

N-T N
U = exp (ix > og’)og‘“)) exp (iﬂ > 0@) (23)
=1

i=1 i=
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could easily be implemented. The second factor is simply a sequence of single qubit rota-
tions on each ion. The explicit pulse sequence for the first factor is,

N-1 : . .
oLt s () ()5 (i)
H elk"X o, ell(,‘,,PU: e ix Xo, e K PO . (24)

In fact the unitary operator in Eq. (23), in the language of quantum circuits, represents N-
qubits that are first subjected to a set of Hadamard single qubit rotations and then succes-
sive nearest neighbour two qubit conditional phase shifts which could be implemented
using the conditional displacements described in this paper. A related model, with more
symmetry (but no spatial extent) would be

U = exp (2195 > ol ) exp (W 3 ol > (25)

ij=1 i=1
= exp (ixJ?) exp (—iNy) exp (ints) (26)

where we have written the required unitary transformations in terms of the collective opera-
tors. This is the nonlinear top model that was introduced by HAAKE [23, 24] as a quantum
chaotic prototype. We now discuss how this can be implemented.

The factor containing the linear rotation in Eq. (26) can easily be implemented using the
method described in the first paragraph of this section. To implement the nonlinear part we
proceed as follows. In the case of N ions with each driven by identical Raman lasers, the
total Hamiltonian is

H = —il(aa" — a*a) J,. (27)

By an appropriate choice of Raman laser pulse phases for conditional displacements we can
then implement the following sequence of unitary transformations

UNL _ eleXJ; eprJ; e—mxXJ, elePJz (28)

where x, = /2 |a| T sin 6 and x, = /2 |a| T cos 6 with 6 the phase of a, and T the pulse
duration. It is easy to see that

UNL = €7i¢j~3 (29)

where ¢ = k,k,. This is the unitary transformation generated by a nonlinear top Hamilto-
nian describing precession around the J. axis at a rate dependant on the z component of
angular momentum. Such nonlinear tops have appeared in collective nuclear models [25]
and form the basis of a well known quantum chaotic system [23].

It should be noted that the transformation in Eq. (29) contains no operators that act on
the vibrational state. It is thus completely independent of the vibrational state and it does
not matter if the vibrational state is cooled to the ground state or not. A similar result using
a different kind of time dependant Hamiltonian has also been presented by S@RENSEN and
MgLMER [26]. In a recent work these same authors have shown the connection between
their approach and the method used in this paper [27]. However Eq. (29) only holds if the
heating of the vibrational mode can be neglected over the time it takes to apply the condi-
tional displacement operators. We discuss below what this implies for current experiments.
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In itself the unitary transformation in Eq. (29) can generate interesting states. For exam-
ple if we begin with all the ions in the ground state so that the collective spin state is
initially |/, —j). and apply laser pulses to each electronic transition according to the Hamil-
tonian in Eq. (11) for a time T such that 2T = 7r/2 the collective spin state is just the J,
eigenstate |j, —j),. If we now apply the nonlinear unitary transformation in Eq. (29) so that
¢ = m/2 we find that the system evolves to the highly entangled state

+) :%ww‘* =), + (=LY &4 1,10, (30)

Such states have been considered by BOLLINGER et al. [28] in the context of high precision
frequency measurements, and also by SANDERS [29]. They exhibit interference fringes for
measurements of J,. As noted above a measurement of J, is easily made simply by reading
out the state of each ion using highly efficient fluorescence shelving techniques.

Let us now consider the full nonlinear top unitary map Eq. (26). A corresponding classi-
cal map can be defined as a two dimensional map of points on a sphere of radius j [24]. A
rich fixed point structure and bifurcation sequence results as y and u are varied. The classi-
cal bifurcations have a quantum analogue in the structure of the eigenstates of the quantum
unitary operator [29]. For the purposes of this paper we will discuss one such bifurcation
which can be used to generate a cat state. We will fix 4 = 7r/2. For small values of y the
points X = +£1,Y =Z =0 are stable(elliptical) fixed points of the classical map. In the
quantum case these correspond to two eigenstates of the unitary operator which are very
well approximated by the extremal eigenstates, |j, £j),, of J,. These classical fixed points
remain stable until ¥y = 2 when they become unstable and two new stable fixed pints are
born in each of the hemispheres X > 0, X < 0. We will restrict ourselves to the X >0
hemisphere. In this hemisphere the two fixed points are located on the line Y = —Z. Corre-
sponding to these two new stable fixed points are two, nearly degenerate eigenstates, |¢)_,
of the unitary operator. A state localised on one of the fixed points will exhibit tunnelling
to the other fixed point on the line Y = —Z [24]. This would be a remarkable demonstra-
tion of quantum nonlinear dynamics arising through a classical bifurcation.

Initial states of the kicked top can be easily be prepared as coherent ar}§ular momentum
states by appropriate linear rotations. In the basis of orthonormal J, and J- eigenstates, the
spin coherent states can be written as a rotation of the collective ground state [23, 30]
through the spherical polar angles (6, ¢),

[y) = exp [i0(J; sin ¢ — Jy cos ))] |, =), (31)

where y = ¢/® tan (%) This can be achieved by identical, appropriately phased pulses on
each ion. Initial states localised in either the regular or chaotic regions of the classical
phase space may thus be easily prepared. A

An experimental demonstration would require measuring the mean value of J, as a func-
tion of the number of times the unitary operator is applied. As discussed above this is
easily done with high efficiency using fluorescence shelving techniques. If we were to stop
the dynamics at half the tunnelling period, the resulting state would be a superposition of
two states of localised angular momentum. Such a state would be entangled with respect to
the underlying electronic levels of each ion, as in Eq. (29).

We have proposed two schemes for coherent manipulation of the electronic qubits in an
ion trap quantum computer that do not require the ions be cooled to the ground state of the
collective motion. The second method is based on conditional displacements of a collective
vibrational mode and can be used to simulate a variety of nonlinear spin models using a
linear ion trap and provide a new path to the creation of highly entangled states via quan-
tum phase transitions. However both schemes require that the heating of the collective
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vibrational mode is negligible over the time of the application of the adiabatic pulses in the
first scheme, or the Raman conditional displacement pulses in the second scheme. It does
not matter that the ion heats up between pulses. If the pulses were applied for times com-
parable to the heating times the pulse sequences described above would not be defined by a
product of unitary transformations but rather by the completely positive maps which in-
clude the unitary part as well as the nonunitary heating part. Such maps provide a means to
test various thermodynamic limits of nonlinear spin models with finite temperature and will
be discussed in a future paper. In current experiments the heating time varies considerably
and depends on trap design, and can be as long as 190 ms. [9, 10]. In experiments, the
sequence of conditional displacements would need to be applied on time scales of less than
about 100 ms. This is easily achievable using Raman pulses. We thus conclude that simple
collective and interacting spin models with a few spins are within reach of current ion trap
quantum computer experiments.
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